The role of Innovation, Knowledge Management and Entrepreneurial Bricolage to gain Competitive Advantage in textile industry: Moderating effect of Absorptive Capacity and Market Turbulence

Maliha Rashid

Abstract

The main purpose of the research was to examine how a textile firm’s ability to maintain a competitive advantage is influenced by the interplay between innovation, knowledge management, and entrepreneurial bricolage. In addition, the role of absorptive capacity as a moderator of these correlations was investigated and evaluated. There was also a focus on the volatility of the market acting as a dampener in the relationships we’ve already discussed. An entire group of people to whom the results of a study will be applied as a whole is called a population. This research endeavor will focus on the Pakistani textile industry. The 362 members of the All Pakistan Bed Sheets and Upholstery Manufacturing Association (ABUMA) were contacted to compile the list of textile companies. The purpose of this research was to examine the relationships between innovation, knowledge management, entrepreneurial creativity, and competitive advantage. In addition, the study aimed to assess the moderating roles of absorptivity and market volatility in the aforementioned correlations. Multiple regression analysis was used to examine the hypotheses. Next, we’ll talk about the direct connections between independent and dependent variables, after which we’ll analyze how ACAP and MT could modify those associations. Only 3 of the 9 hypotheses tested were correct. Policymakers in the textile industry will find the study’s conclusions useful. Companies can use these findings to make strategic decisions that give them an edge in the market. The research shows that firms should place an emphasis on entrepreneurial bricolage if they want to get an edge over their rivals. Consequently, it is suggested that leaders in the sector put in place protocols to make optimal use of the aforementioned resources. They ought to make the most of the resources at their disposal and of the synergies between the various resources.

Keywords: Innovation, Knowledge Management, Entrepreneurship

Background

It is thought that the textile industry in Pakistan creates more than 40% of all industrial jobs and 25% of all industrial value-added goods. Even though the goods change with the seasons, they still make up 60% of the country’s exports. According to individuals who operate in Pakistan’s textile industry, its constituent parts include cotton spinning, fabric
processing, home textiles, cotton cloth, cotton yarn, cotton fabric, towels, hosiery, knitwear, and ready-made garments. These things are made in both big and small factories. Pakistan is held together by its textile industry. But there are other problems with exporting these items that need to be fixed as soon as possible. As energy costs go up and monetary policy gets stricter, countries like Vietnam, India, Bangladesh, Thailand, and others are giving the textile industry a lot of competition in the world market.

Pakistan's textile industry exports 70% of what it makes, but the conditions in which its workers work are terrible. When it comes to small manufacturing businesses, employment contracts are often signed with reluctance. They don't pay enough to live on, and they also hire small children. This is against federal minimum wage laws. In 2012, 255 people died in Karachi because a factory that didn't follow safety rules caught on fire. Pakistan has 547 labor inspectors whose job it is to keep an eye on the 300,000 businesses in the country. But textiles are still out of hand.

In 2018, our textile industry again fell short of what we had hoped for. Even though the Pakistani rupee lost 29% of its value, it failed to deliver. The failure was blamed on both outdated equipment and a lack of workers with the right skills. Exports dropped by 6% in November 2018 when compared to the same month last year. Still, the textile mills are going out of business. There have been more than 125 mills shut down, the majority of which closed in 2018.

The textile industry was helped a lot by the government's policies, but the industry as a whole wasn't very excited about growth. The state was supposed to come up with a rescue fund, but business leaders didn't use new technology that would have made their businesses run better. In the 1990s, there was more competition because of globalization. Because of this, the problems the company was having also got worse. Organizations started to realize that they needed to do more than just work faster. Instead, they should work to make their supply chains more competitive.

A company's competitive advantage is its ability to do a better job than its competitors at giving customers more value. It talks about the company's strengths, which help set it apart from its competitors. Research has shown that price, quality, speed of delivery, and flexibility are the most important competitive advantages.

Researchers agree that technological, non-technical, and organizational innovations are all important for gaining a competitive edge. In literature, most people agree that technology is important. At first, research on innovation was limited to how to make products better. According to the marketing literature, it's important to look at both technological and non-technical innovations at the same time (Han et al., 1998; Varadarajan & Jayachandran, 1999).

Along with innovation, knowledge management may help a business gain a competitive edge. Knowledge management has been found to have many different parts, such as its many definitions and methods, as well as its different levels of information sharing, possible outcomes, and success criteria. Some experts say that knowledge sharing is when people in different parts of an organization share their skills and technology (Gupta and Govindarajan, 1991). Some people have called it the "swap" of good ideas (Szulanski, 1996). This process has four steps: the idea, the plan, the ramp-up, and the integration (Szulanski, 1996).

Entrepreneurial bricolage is another trait that gives a business an edge over its competitors. Entrepreneurial bricolage is a theory about how people act that talks about the many choices entrepreneurs can make when they don't have enough resources. The academic community has come up with the following definition of bricolage: “the act of
making something from numerous components in order to address fresh circumstances or opportunities" (Baker & Nelson, 2005). Both inductive and qualitative approaches are possible for analyses (Garud & Karnoe, 2003). Previous studies have shown that bricolage can be both helpful and harmful to businesses. Bricolage, for example, helped Olivetti change, but it also hurt the overall performance of the company (Ciborra 1996). Other studies have found that the firm's level of innovation should also be taken into account when judging the results of bricolage (Anderson 2008). Previous studies, like those done in the 1990s by Schoonhoven, Olson, Walker, and Ruekert; in 2003 by Green and Welsh; and in 2003 by Schoonhoven, Eisenhardt, and Lyman, have shown that radical innovations happen when different resources come together. These studies also show that innovation requires different skills and abilities (Swink, Sandvig & Mabert, 2003). The ACAP framework shows how creativity and a competitive edge are closely linked. Researchers say that organizations with more ACAP are better able to handle information from the outside. There are many good things about this plan. It was found that the CA's ability to take in information is a very important asset, especially in fields where information changes quickly.

The main purpose of this study is to look at how competitive advantage and different management techniques are linked (innovation, knowledge management, and entrepreneurial bricolage).

Literature Review

Researchers cannot agree on the definition of innovation since the term itself is ambiguous (Adams et al., 2006). In addition, there is a lack of consensus on how to implement innovation and its many forms in the current world. There are several interpretations of the written word (Buddelmeyer et al., 2009). Small businesses have greater autonomy. It encourages employees to think creatively, which increases productivity. Because they can adapt, they can react more swiftly to market developments. They may have an edge over their rivals if they target certain markets and use innovative technology (Hafeez, Shariff & Lazim, 2012). It is simpler for smaller businesses to modify and adjust their tactics to capitalize on the success of other businesses.

According to Penrose's (1959) theory of business development, the success of a corporation in global markets may be aided by the generation of new ideas. (Kylaheiko et al., 2011; Hessels, 2007). According to RBV researchers, a company's CA stems from both technical and non-technical aspects of innovation. To succeed in worldwide markets, CA must generate innovative concepts. Exports will increase if it is successful (D'Angelo, 2012; Love and Roper, 2015; Wakelin, 1998; Wynarczyk, 2013; Nassimbeni, 2001; Roper and Love, 2002; Sterlacchini, 1999; Basile, 2001).

Research on innovation indicates that a company's success may rely on its innovativeness. According to Monreal-Pérez et al. (2012), the ability to create at a high level provides more access to the global market. However, there are several types of inventions, and each influences export success differently. A corporation may gain a competitive advantage by releasing innovative items that provide consumers with more value. Long-term process innovation reduces manufacturing costs and provides a competitive advantage to enterprises (Hughes et al. 2010). Businesses may expand their consumer base by developing novel and inventive business strategies. It also affords them the opportunity to interact with existing and potential consumers (Comes and
Berniker, 2008; Gambardella and McGahan, 2010). It may profit in a variety of ways from various marketplaces (Imbriani et al., 2014).

The vast majority of research done on this topic has illuminated the critical role that innovation plays in a company’s long-term success and competitiveness. Businesses that want to maintain their present market share in today’s highly competitive markets must constantly innovate new ways to compete. Companies who continually break new ground in terms of innovation will find themselves in a favorable position in the marketplace. Businesses that are good at creating novel ideas will be better able to respond to changes in the economy and other factors in their external environments. They may be able to outperform their competition and get an edge if they invest little time and effort into obtaining the required abilities in a short period of time (Hurley & Hult, 1998).

In the texts on the invention, several perspectives are presented. There are two kinds of innovation: new goods and new processes. Both have been extensively explored. When it comes to innovation, product innovation is seen as the most crucial aspect since it concentrates on the product’s uniqueness. Creating new objects is a dynamic process that is route dependent. It instructs businesses on how to get CA via resource development and reconfiguration if they are resourceful (Branzei & Vertinsky, 2006).

Given that SMEs are tiny and adaptable, it is simple for them to modify how their resources are organized and how they collaborate. The economies of scale provide them with an edge over their larger rivals. Innovation may be more helpful to small and medium-sized businesses if they look at it through the lens of their dynamic capabilities (SMEs). The uniqueness of newly introduced items is introduced at the optimal moment (Wang & Ahmed, 2004). Process innovation includes new methods of manufacturing and managing things, as well as new technology that can be used to improve the efficiency of making and managing things (Wang & Ahmed, 2004: 305). Product innovation refers to the development of a new or improved product. System formation is the result of process innovation. Consequently, a new approach or technique may be developed (Oke, Burke & Myers, 2007). Important studies for product and process innovation include Tang (2006), Avermaete et al. (2004), Wang & Ahmed (2004), Free1 (2005), Leiponen & Ahmed (2005), and Ar & Baki (2011). Literature also places significant focus on non-technological advances, such as administrative and marketing improvements. Past research revealed that a great deal of focus was also placed on developing new items or technology. On the contrary, administrative and marketing innovation (Ngo & O’Cass, 2013) seem to be neglected.

People think that knowledge is an important part of CA and creating value (King and Zeithalm, 2003). It’s a way to share and organize both physical and nonphysical assets. KM makes it easier for a culture of sharing information and always learning to grow. It also helps build intellectual capital. Businesses do better when they use KM. It is a tool for running a business in a smart way. Knowledge management is the process of gathering, organizing, and sharing information. It also involves creating an environment that makes it easy for information to spread within an organization (Naktiyok, 2004, pp. 193). The process of making, storing, sharing, and using information is called “knowledge management.” It also entails the creation of internal knowledge in addition to the gathering of information from the outside world; the preservation of knowledge in the form of official papers in addition to the day-to-day tasks, the improvement of the knowledge that has been collected; and the sharing of knowledge both inside and outside the organization (Alavi & Leidner, 2001). KM is the process of using information
from past and future decisions to improve the performance of organizations (Jennex, 2005). Wong and Aspinwall say that knowledge management is a method for managing and making the most of both internal and external sources of knowledge (2006). Knowledge management has become more important to businesses in recent years. In the industrialized world, there is a lot of disagreement about how important knowledge is for getting a competitive edge. The main points of these conversations are the basics of creativity and technical skill (Simmie, 2003).

Industries have stressed how important KM is because of inefficiencies, missed opportunities, and wasted time. These are the bad things about being in a competitive market. Researchers have found that knowledge management is essential for a company to have an edge over its competitors. Knowledge management is also valued for its ability to give a company a long-term competitive edge. There is a theory that KM helps keep CA going, but there isn’t much research on this subject. Descriptive studies show that there is a clear link between KM and CA (Ndlela & Toit, 2001; Holsapple & Singh, 2001).

In today's world of fierce competition, the key to business success is good knowledge management. Businesses that do well are able to create information often, share it quickly, and use it to improve their products and services (Tiwana, 2002). Peter Drucker talked about two good things that companies can do in the twenty-first century. This is made up of knowledge and people who work with knowledge (Drucker, 1999). Many businesses have started to use knowledge management because of its benefits and importance (Eldridge, Balubaid, & Barker, 2006). Literature explains the things that affect how well a business does. These include innovation, company performance, knowledge management, and technical competency.

Knowledge management is an important tool for businesses to use to reach CA. So, companies should look at both internal and external information as important sources of competitiveness in order to structure and develop products and create value for customers (Grant, 1997; Zack, 1999). Scholars thought, from a resource-based point of view, that information about businesses that comes from outside sources could be easily copied by their market competitors. How well a company does depends on how well it can use its knowledge resources and develop specific KM skills (Gold, Malhotra, & Segars, 2001). Even though KM resources are spread out evenly across competitive businesses, there are different ways that KM is used and how well it works. From a resource-based point of view, academics who study knowledge management have found many KM resources that could be future sources of competitive advantage. Gold et al. (2001) give examples of structural, technical, and cultural resources as examples.

Entrepreneurial Bricolage:

In 1967, Lévi-Strauss introduced the idea of bricolage. As Miner, Bassoff, and Moorman (2001; Lévi-Strauss, 1967; eick, 1993) put it, it's "creating something using given resources." The term "bricolage" was not defined by Lévi-Strauss (1967), but it was widely used by researchers to describe a wide range of phenomena. A single definition of this idea has not been attempted by any researcher. Repurposing already-existing assets is a common tactic used by entrepreneurs. Business bricolage theory provides an explanation for this phenomenon. Bricolage's unexpected outcomes have been discovered by researchers (Levi-Strauss, 1967). It is possible, however, that this might have unintended consequences and contribute to the organization’s underperformance (Hatton, 1989; Baker & Nelson, 2005). The term "bricolage" refers to the art of combining disparate elements to create something new. It's a kind of pragmatic intelligence, if you will. To take
advantage of the market's prospects, individuals must be able to manage their resources effectively (Wagner, 2000). The word "bricolage" was coined by Claude Levi-Strauss in 1967 to imply repurposing existing materials and combining them to create something new (Garud, Kumaraswamy, and Nayyar, 1998; Venkataraman, 1997; Baker & Nelson, 2005). The author used terms like repertoire, tools, and talents to describe these resources. In addition, the term "bricolage" was further defined by Baker and Nelson (2005). They emphasized the use of existing resources rather than purchasing new ones. Bricolage, according to them, is the act of repurposing already-existing or readily-accessible materials for a new function. It is also possible to pool resources in order to come up with fresh answers to old issues. Using bricolage, corporations are better able to take advantage of chances that other companies deem out of reach due to their limited resources. An unanticipated bricolage process was used by Garud and Karnøe (2003) to describe how wind turbines were built. Additionally, bricolage is useful for small businesses who are having a hard time acquiring or purchasing additional resources because of their lack of legitimacy (Stinchcombe 1965). Bricolage, on the other hand, enables people to solve new challenges by repurposing old ones. EB aids in the development of new business models. Improved content, governance, and structure, as well as taking advantage of new possibilities, are the means by which this form of innovation is generated (Zott & Amit, 2010). With the use of resources, EB helps to generate new content, governance, and structure in order to respond to new challenges and seize new possibilities (Baker & Nelson, 2005). As a result, it leads to the development of new business models. Using advanced literature and research on the narratives of entrepreneurship (such as Martens et al., 2006) and storytelling, we may get a better understanding of institutional entrepreneurship (e.g., Hjorth & Steyaert, 2004). Bricolage users (also known as bricoleurs) may build and identify maximum potential to expand and target the usage of resources with the aid of resource combinations for bricolage users. Bricolage applications are "ahead-looking probes" (Brown & Eisenhardt, 1997) and the study of what might be done for the fast expansion of enterprises are examples of bricolage applications. Forcing the company's resources into too much of a frenzy may lead to a lack of clarity in the company's resource selection, combination, and choosing process (Ireland & Webb 2007). It is possible for companies to gain more from bricolage if they utilize it properly, rather than just combining it with other strategic challenges. These businesses understand exactly what they're selling, who they're selling to, and how they can add value to their offerings. Penrose's extensive examination of the nature of organizations' resource environments should help entrepreneurs better grasp how to generate value in today's changing climate (1959). It's possible for two companies with identical resources (such as material and human resources) to generate wildly different goods and services because of their ability to combine and use these resources (Penrose, 1959). Many small firms have difficulty with limited resources. Less than $5,000 is often required to start a new company (U.S. Department of Commerce, 1992). Oftentimes, these businesses have no employees, but they may have a family member who helps out with the burden (Ruef, Aldrich, & Carter, 2003). In a highly competitive market, only a few new businesses are able to thrive. In addition, they must find a way to bring in certain resources (both monetary and human) whenever they are in need (Penrose, 1959; Aldrich & von Glinow, 1992). Even in companies that seem to be thriving, it generates a shortage of resources. RBV is a representative of the strategic management field's main tradition (resource-based view). Entrepreneurship, on the other hand, has received much less attention (Barney 1991; Wernerfelt 1984; Peteraf 1993). (Alvarez & Barney, 2002;
Chandler & Hanks, 1994). Strategic advantage is determined in large part by the value of resources to the company (Eisenhardt & Martin, 2000). Researchers have proposed the bricolage notion (Levi-Strauss, 1967) to describe the process of creating new things from existing ones, or "making do," and then combining those things in new ways. Most entrepreneurs use a theoretical framework for resource development analysis that is based on this theory (Gonzales, 2003; Baker, Miner, & Eesley, 2003; Cunha, 2005; Baker & Nelson, 2005). According to the resource-based concept, "entrepreneurial skills" are one of the most important resources. RBV for entrepreneurial enterprises is based on the entrepreneurial qualities addressed in this subject (Alvarez & Busenitz, 2001). In the creative sector, there is a degree of unpredictability (Ross, 2009). Because this business relies on networks for learning new skills, working with others, and assisting in their own creative growth, it is also resource restricted (Hotho & Champion, 2011). (Potts & Cunningham, 2008; Daskalaki, 2010). Bricolage in the creative sector is all about finding new ways to connect, connect, and connect. As a result, the optimal combination of finding new links and dimensions between "issues, resources, and activities" is the goal of creative industry bricolage (Guercini & Runfola, 2012). The creative industries are often studied from a variety of angles. The majority of them see entrepreneurship as a fundamental component of their personality (Garnham, 2005; Chang, 2012; Heinze and Hoose, 2012).

Absorptive Capacity

New information is created by a process of adding, updating, transforming, and reinterpreting existing knowledge. For a company to be successful and innovative, outside resources (Cassiman and Veugelers, 2002) are essential (Cassiman & Veugelers, 2002). (Rosenberg, 1982). According to Cohen and Levinthal (1989, 1990), a company can't get the most out of information it gets or is exposed to from the outside. So, companies should get better at figuring out the right value of new information, taking it in, and putting it to good use in business. This means they should improve their "absorption," to put it simply. By using absorptive capacity (ACAP) as a competitive strategy, firms are progressively benefiting from an increase in external information (Cockburn & Henderson, 1998).

There are a variety of ways to get information from the outside world. Even if companies should utilize it for this, it doesn't mean they should restrict their usage to this. Increased outside-information exposure alone will not be enough for corporate success. Absorbing new knowledge effectively, according to Cohen and Levinthal, requires "absorptive capacity" (1990). The "absorptive capacity" of a corporation refers to its ability to identify, absorb, and put to use outside information.

ACAP is defined by Cohen and Levinthal (1990) as the process of "recognizing the value of new information, assimilation thereof, and application to business needs." One example of a company's adaptable abilities is its capability to take in fresh information on a consistent basis. How well the company's many skillsets are able to work together determines how well it can create and use the data needed to build out its other organizational competencies (such its marketing, distribution, and production infrastructure) (Zahra & George, 2002). A recent study's results suggest that companies with their own R&D departments may be better able to utilize information gathered from external sources (e.g., Mowery, 1983; Tilton, 1971; Allen, 1977). This allows us to confidently state that ACAP is the result of industrial R&D efforts. Many investigations have shown that ACAP is a byproduct of the company's production process. For example, Arora and Gambardella (1994) found that the number of partnerships a firm has in the
biotechnology industry may be influenced by its ability to assimilate new information. There are two types of absorption: adsorption and adsorption capacity.

Theories of work motivation like the expectation-valence theory (EVT) have generated a lot of debate over how hard individuals work (Vroom, 1964). According to this study, motivated employees have a greater impact on a company's success than unmotivated employees. No matter how good a person is at learning, if he or she lacks motivation, they won't put their newfound knowledge into practice (Baldwin et al., 1991).

When we talk about "prior knowledge" in the workplace, we're referring to information that workers already have (Kim, 2001). According to this definition, "prior knowledge" relates to one's past work experiences and how they are used in their present role. As a result, businesses must examine and use these elements (Cohen & Levinthal, 1990). A company's desire to innovate and its efforts to do so are equally important (Cohen & Levinthal, 1990). Kim (2001) says that "intensity of effort" refers to how much effort people put into overcoming obstacles. Most studies on absorptive capacity's competitive advantage ignored its organizational roots (Lane, Koka, & Pathak, 2002). Organizational absorptive capacity was highlighted by Cohen and Levinthal (1990), who emphasized the importance of individual absorptive capacity. Learning new skills is quite important for a company (Zollo & Winter, 2002; Cockburn, Henderson, & Stern, 2000). It's simply that the way ACAP is put up has a different and better impact on the results of the project. According to Zahra and George (2002), there are four main aspects of ACAP for both prospective and actual absorptive capacity. Using these factors correctly would help the firms, they said. The capacity of small businesses to take advantage of market opportunities is strongly linked to their success (Lumpkin & Dess, 1996). As a consequence of this ACAP, small and medium-sized businesses may have access to new sources of knowledge and opportunities via both formal and informal means (such as direct contact with customers and partnerships with universities) (Rothaermel & Alexandre, 2009). They have a higher probability of success than the other companies. A company must have a wide range of alternatives to choose from in order to succeed. It's more probable that something good will come out of a situation when there are many possibilities (Anderson & Eshima, 2013). High-absorptive-capacity companies analyze enormous amounts of data to find new opportunities (Cassiman & Veugelers, 2006; Cohen & Levinthal, 1990). When new information is analyzed and conclusions are drawn, the ACAP system is vital (Zahra & George, 2002). As a result, firms with entrepreneurs have a distinct advantage over those without. This makes it possible to have a monopoly, which leads to higher profits for a while (Lumpkin & Dess, 2001).

Market Turbulence:
Market-oriented behaviour has been intensively examined as a determinant in the growth and success of businesses. For example, writers like Kohli and Jaworski (1990) originally supported a market-driven method for enhancing performance, such as Narver and Slater (1990). The potential of the external environment to limit one's behavior is still being studied, but the research is sparse. Research on this topic has been conducted exclusively in the United States (Slater and Narver, 1994) and the United Kingdom (Kumar, Subramanian, and Yauger, 1998). Many authors use the phrase "market turbulence" in a variety of ways. That which Kohli and Jaworski (1990) refer to as a change in customer characteristics and preferences is what we're dealing with here. Aside from that, the market turmoil is accompanied by alterations in the manner in which markets are conducted (Greenley, 1995). Hult and colleagues (2004) describe market turbulence as the changeable preferences of consumers, their wants and wishes, as well as their
withdrawal and entrance into the market, as well as new commodities provided by firms. For their study, they looked at both the number of clients and their expectations. Additionally, the rate of change of competitors and the amount of uncertainty in the market were identified. The capacity to precisely predict customer preferences, the competitive character of the market, and environmental changes all contribute to market uncertainty (Milliken, 1987). According to the MT concept, firms have to adapt to changing market conditions and customer expectations (market dynamism). The capacity of companies to prepare for market rivalry is also taken into consideration (market uncertainty). To keep up with changing customer preferences and demographics, companies must adapt their marketing approaches (Slater and Narver, 1994). Instead of waiting for market turbulence to arise, organizations could focus on their customers' needs during times of low market turbulence in order to get an advantage over their competitors. Stable markets make it simpler to understand customer preferences since they don't change. Customer demands might shift swiftly in an unstable economy. Organizational divisions must then work together more closely at this time (Morgan & Piercy, 1998). These changes can be handled more rapidly if everyone helps. A thorough awareness of the current market conditions is essential at this point in time (Slater and Narver, 1994; Kumar et al., 1998). In a volatile market, a corporation may choose to forgo a standard configuration that becomes a hindrance to making changes. Because of its unique resources, a corporation may easily adjust its business model to future changes (Grant, 1991). However, market volatility worsens this association by raising uncertainty and risk for companies' strategies and results. Therefore, care must be used while handling it. Customers' needs and items' production methods, as well as manufacturing technologies, are more volatile and unpredictable in turbulent markets (Atuahene-Gima, Li, & De Luca, 2006). New and innovative products are often introduced because businesses in a turbulent market work hard to suit customers' ever-changing needs. In order to come up with fresh and profitable ideas, companies must work with others (Jap, 2001). A company's vulnerability to high levels of opportunity is further enhanced when it seeks new and imaginative methods to improve its earnings (Williamson, 1994). The firm's strategy is moderated by the fact that it utilizes a variety of approaches under various market conditions. In a competitive market, the qualities of the market determine the choice of strategies. A company's relevant environment must be taken into consideration while establishing a TQM strategy. Before making any strategic choices, a corporation may more easily suggest its approach to others when it is aware of the surrounding environment. Organizations may benefit from the quality practices of enterprises that use TQM as a strategy. It might be more valuable to them depending on the market conditions. A company's ability to gain a competitive advantage depends on the effectiveness of its market forces. Keeping tabs on their unique resources is critical in today's turbulent market, where customer expectations are always changing, and the actions and technologies of competitors are difficult to forecast at any one time. Because of the ever-changing market, they must ensure that their unique assets are still relevant (Webster, 1994). You may deduce that from the fact that environmental factors affect strategic choices and performance. A volatile market makes it difficult to forecast what customers want, the impact of competitors on those desires, and the effects of larger environmental forces. More often than not, there will be discrepancies between what customers want and what the firm has to give. In order to predict future customer needs, companies should have a proactive mindset (Miles and Snow, 1978). Over time, this proactive approach encourages more innovation inside the
organization. If the major emphasis is on the market rather than clients, even tiny enterprises may be able to do this successfully (Kohli and Jaworski, 1990). Buyers are more inclined to accept products already offered by their peers if the market for growth has more demand than supply. When demand growth is weak, businesses should spend more time and effort understanding what they supply to customers and how to better match their wants. To stay on top of the ever-changing needs of their customers in ever-volatile markets, businesses must focus on innovation. In unpredictable marketplaces, companies that are more market-oriented are better equipped to anticipate the shifting expectations of their clients. As a result, improving performance may be measured in terms of innovation. Innovation is viewed as a crucial tool for success in times of market turmoil and other environmental shocks (Hult et al., 2004).

Intense competition between enterprises and the unpredictable nature of technology are to blame for turbulence in the market. Since technological innovation and product development are oftentimes short-term endeavors, companies need to place a higher emphasis on their technical capabilities to keep their competitive edge. There is a higher chance of missing possibilities and failing to protect those opportunities in a turbulent market where every competitor is continuously seeking for new ideas from a varied variety of sources. Firms have the option of extending their existence forever in order to maintain their ideas and methods. Intellectual property rights are often overprotected as a result (Williamson, 1994).

There are few major competitors in concentrated markets. Competitiveness in these sectors might be substantially altered by any of the top rivals. When a company takes aggressive measures like price reductions and new service launches, it shows a rise in intensity (Porter, 1980). One top opponent may have an enormous impact, so keeping an eye on the competition is critical. The sheer number of competitors makes it difficult to keep track of them all. No one can shift the market's power balance, so it doesn't really matter. The best strategy for success in these instances is to focus on the buyer's value estimates while keeping current with the competition. Keeping tabs on the expenditures and intentions of competitors might help a corporation learn about its own weaknesses. If the rules of the game aren't clearly defined, the positions of competitors may fluctuate often (i.e., competitors may go back and forth between groups) (Porter, 1980). Because of this, it's almost impossible to keep tabs on competitors. Day and Wensley (1988) say that "customer attention" is needed in "dynamic markets with changing mobility impediments, multiple competitors, and widely spread end-user markets."

Conceptual Framework

Strategic management researchers have known for a long time that a company's ability to compete depends on two things: its unique qualities and the outside environment in which it operates. There have been other studies (Chandler, 1962; Andrews, 1971; Penrose, 1959; Hofer & Schendel, 1978). A lot of attention has been paid to the CA idea in management science writing. Porter's (1980, 1985) ideas of cost leadership and differentiation can help a business gain a competitive advantage. Cost leadership lets businesses price their products aggressively and increase sales volume, while differentiation helps build brand loyalty and lets the company sell its products at higher prices. For CA, the timing and size of a business's commitment (whether it's big or small) are important things to think about (whether they're an early mover or a late mover) (Lieberman & Montgomery, 1988; Ghemawat, 1986).

The assumptions and propositions of RBV have been spelled out by many academics who have looked into the link between company resources and performance
(Wernerfelt, 1984; Rumelt, 1984; Barney, 1991; Barney, Wright & Ketchen, 2001). The critical resources a company has are the most important tools for improving performance and making it more competitive (Wernerfelt, 1984). Academic research has shown over and over again that a firm’s competitive advantage and its abilities go hand in hand. Firms’ ability to set themselves apart from the competition is a big part of how well they do in the market (Hofer & Schendel, 1978; Andrews, 1971; Snow & Hrebiniak, 1980). The resource-based view (RBV) says that a company’s competitive advantage comes from its unique resources (Wernerfelt, 1984; Barney, 1991; Peteraf, 1993). RBV put a lot of emphasis on the fact that small businesses need to find and use their own unique strengths in order to do well.

During his research, RBV came up with a number of manufacturing parameters that should be flexible. From this point of view, many resources and skills can only be built up over time. This is called "path dependence." Companies don’t know how quickly they can make these skills because they can’t get them anywhere else (Barney, 1991; Dierickx & Cool, 1989).

![Figure 1: Conceptual Framework](image)

H1: There is a significant relationship between Innovation and Competitive Advantage
H2: There is a significant relationship between Knowledge Management and Competitive Advantage
H3: There is a significant relationship between Entrepreneurial Bricolage and Competitive Advantage
H4: Absorptive Capacity moderates the relationship between Innovation and Competitive Advantage
H5: Absorptive Capacity moderates the relationship between Knowledge Management and Competitive Advantage
H6: Absorptive Capacity moderates the relationship between Entrepreneurial Bricolage and Competitive Advantage
H7: Market Turbulence moderates the relationship between Innovation and Competitive Advantage
H8: Market Turbulence moderates the relationship between Knowledge Management and Competitive Advantage
H9: Market Turbulence moderates the relationship between Entrepreneurial Bricolage and Competitive Advantage.

It was the major objective of the research to examine how the competitive advantage of the textile sector is affected by innovations, knowledge management, and entrepreneurial bricolage. The absorptive capacity was also examined in connection to these correlations. These links were also studied in regard to the volatility of the market. People in general are considered to be part of a study's population. This research focuses on the Pakistani textile sector. Abuma, which has 362 enterprises as members, provided us with a list of textile manufacturers in Pakistan.

A sample is a group of individuals from whom data is gathered. Methods and tools used to choose objects from the population are called sampling (Fraenkel & Wallen, 2003). In the absence of resources, it is almost difficult to gather information from the whole population. Cooper et al. (2006) and Zikmund et al. (2010) came up with some solutions to these issues. As a result, selecting the correct samples is an important element of doing research. There will be more confidence in a study's findings if the sample is selected correctly (Sekaran, 2003).

Sampling begins by determining the purpose and intended audience of a research. The researcher then selects the persons who are simple to contact from the whole population. After that, it’s time to collect some samples (Ary, et al., 2002). Pakistan’s textile industry employed every single individual in the country. This research utilized Krejcie and Morgan’s 1970 table to determine the sample size. Using this method is a useful technique to determine how large a sample size should be. The sample size is 186 since there are 362 textile enterprises in the study’s population. In order to conduct this research, random sampling was conducted in a deliberate manner. From the population, every nth member is taken, beginning with an arbitrary number between one and n. (Sekaran, 2003). A list of all the Pakistani firms that create bed linens was used to choose the samples (APBUMA). The random number generator in SPSS was used to choose the samples. 140 of the 186 textile firms who received surveys returned them. All 113 of them came in handy.

Measurement:
There are total six variables in this study. Three of them are independent variable, two are moderators and one is dependent variable. The data were collected through a structured questionnaire. Respondents were advised to respond on a five-point likert scale. Questionnaire was adapted from previous researches on the same constructs.

Innovation: The scale for the measurement of innovation was adopted from Wang and Ahmad (2004) and Weera and Wardena (2006). It has four dimensions:

- Product innovation
- Process innovation
- Marketing innovation
- Managerial innovation
Every dimension has three items. So, the overall construct has total 12 items. The items were coded as Product Innovation: PDI1 to PDI3; Process Innovation: PRI1 to PRI3; Marketing Innovation: MKI1 to MKI3 and Managerial Innovation: MNI1 to MNI3.

Knowledge Management: The scale for knowledge management was adopted from Rasula et al. (2012). It has eight items. The items were coded from KM1 to KM8.

Entrepreneurial Bricolage: The measurement scale for the entrepreneurial bricolage was adapted from Dahlqvist (2007) and (Liao & Welsch 2003). It consists of 8 items. The items were coded from EB1 to EB8.

Absorptive Capacity: Absorptive capacity scale was adopted from Tessa et al (2010). It has 14 items ranging from AC1 to AC14.

Market Turbulence: The scale for the measurement of market turbulence was adopted from Jaworski and Kohli (1993). It has total three items. The items were coded as MT1, MT2 and MT3.

Competitive Advantage: The measurement scale for the competitive advantage was adopted from Zhang, 2001. Its dimensions are five. It has total 16 items ranging from CA1 to CA16.

Data Analysis:
It explains the tools & techniques used for the analysis of data. For the descriptive (demographic) analysis, SPSS was used. The version of SPSS was SPSS 25. For the data analysis, SmartPLS 3.00 was used. Different tests (descriptive statistics, factor analysis, correlation, regression etc.) were performed by using such software to measure the relationships between IVs and DV. The moderating effect of the moderators was also examined.

Demographics:
Total 186 questionnaires were distributed among the respondents. Out of which 140 questionnaires were collected back having a response rate of 75.26%. 113 questionnaires were useable. 27 questionnaires were incomplete and hence these were deleted. Respondents of study were CEOs or higher management of textile firms. The table presented below shows demographics of respondent firms.

<table>
<thead>
<tr>
<th>Demographics Variables</th>
<th>Categories</th>
<th>Number</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Years</td>
<td>1-5</td>
<td>11</td>
<td>9.7</td>
</tr>
<tr>
<td></td>
<td>6-10</td>
<td>14</td>
<td>12.4</td>
</tr>
<tr>
<td></td>
<td>11-15</td>
<td>12</td>
<td>10.6</td>
</tr>
<tr>
<td></td>
<td>15-20</td>
<td>14</td>
<td>12.4</td>
</tr>
<tr>
<td></td>
<td>20+</td>
<td>62</td>
<td>54.9</td>
</tr>
<tr>
<td>Employees</td>
<td>1-20</td>
<td>25</td>
<td>22.1</td>
</tr>
<tr>
<td></td>
<td>21-40</td>
<td>11</td>
<td>9.7</td>
</tr>
<tr>
<td></td>
<td>41-70</td>
<td>15</td>
<td>13.3</td>
</tr>
<tr>
<td></td>
<td>71-100</td>
<td>12</td>
<td>10.6</td>
</tr>
<tr>
<td></td>
<td>100+</td>
<td>50</td>
<td>44.2</td>
</tr>
<tr>
<td>Activity</td>
<td>Manufacturing</td>
<td>95</td>
<td>84.1</td>
</tr>
<tr>
<td></td>
<td>Servicing</td>
<td>5</td>
<td>4.4</td>
</tr>
<tr>
<td></td>
<td>Trading</td>
<td>13</td>
<td>11.5</td>
</tr>
</tbody>
</table>
According to the data in the table, 54.9% of the companies that responded had been in business for more than a decade. Approximately 14 businesses (12.4%) fell within the 6-10 and 15-20-year timeframes, respectively. A total of 12 companies (10.6%) fell into the 11-15 year group, while 11 companies (9.7%) belong into the 1-5 year category.

The majority of responding businesses (44.2 percent) employ more than 100 people. Twenty-five businesses (22.1% of the total) employ this many people. 15 responses (13.3% of those surveyed) had workers ages 41 to 70. Nearly a tenth of the surveyed companies had between 71 and 100 workers. And there are 11 companies (9.7%) that employ between 21 and 40 people.

Manufacturing accounts for 84.1 percent of the businesses that responded to our survey. Thirteen (11.5%) of those polled are now trading. More than half of the respondents (44.4%) provide their own services.

Over the previous five years, 54% of the 61 companies have seen an increase in their standing. The position of 40 companies (35.4%) is steady, whereas the situation of 12 companies (10.6%) is deteriorating.

We received a big number of responses from major companies. More than a half-dozen companies (58.4%) have spent at least $40 million. A total of 22 respondents (19.5%) have invested between $2 million and $10 million in their businesses. There are nine companies (8%) in the two categories of $21 million to $40 million. Respondents in the 11-20 million range make up only 6.2% of the total.

Measurement Model Results:

Latent variables and observable variables are shown in this model. An assessment of any model begins here. A conceptual framework’s constructs are assessed by the validity and reliability of the items in the study (Chin, 2010). Accuracy (reliability) and validity of constructs are measured using it. This section evaluates the accuracy (reliability) and validity of the measurements. These are the standards by which it is judged: (Ringle and Sarsted; 2013; Hair et al., 2014)

- Indicator Reliability
- Internal Consistency
- Convergent Validity
- Discriminant Validity

As part of a measurement model evaluation, a researcher has to look at how each item fits together internally, how reliable it is, and how valid it is (2009; Hair et al. 2014, 2010).
Fig 2. Measurement Model

The outside loadings of each item are used to test the dependability of each item (Darte & Raposo, 2010; Hair et al., 2014, 2012; Hulland, 1999). According to researchers, goods with loadings of between 0.40 and 0.70 should be retained for use (Hair et al., 2014). Outer loadings larger than 0.5 were retained in this analysis; all other factors were removed. The factor loadings of the items that were retained are displayed in the following table.

Measurement of Internal Consistency Utilizes Composite Reliability and Cronbach Alpha (Hair et al. 2011). According to the aforementioned criteria, objects are connected to one another. Values higher than 0.7 are not acceptable. You shouldn’t put your faith in values that are less than 0.6. (Nunnally & Bernstein 1994; Hair et al. 2013). The table below shows the CR values for all of the latent variables. From 0.801 to 0.923, the threshold value, which is greater than this number. It implies that there is sufficient internal consistency to be trusted (Hair et al., 2011; Bagozzi and Yi, 1988).

The table also contains the cronbach's alpha values. Cronbach's alpha values have a rule of thumb developed by George and Mallery (2003). Those readings over 0.9 are regarded as excellent, those above 0.8 are good, those above 0.7 are acceptable, those above 0.6 are dubious, and those below 0.5 are considered unsatisfactory by them.
(p. 231). The constructions’ reliability is measured by these values. MT’s value is less than 0.7 in Table 4, although AC, innovation, CA, EB and KM all have excellent values. Consensus of evidence Fornell and Larcker recommended that AVE be used for convergent validity evaluation (1981). As of this writing, the AVE’s cutoff point is 0.5 (1998). The AVE values in the table below are all more than or equal to 0.5. In other words, there is sufficient convergent validity to make this claim (Chin, 1998).

Table 2: Discriminant validity

<table>
<thead>
<tr>
<th>Items</th>
<th>Factor Loading</th>
<th>Composite Reliability</th>
<th>Cronbach's Alpha</th>
<th>AVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC1</td>
<td>0.673</td>
<td></td>
<td>0.919</td>
<td>0.901</td>
</tr>
<tr>
<td>AC2</td>
<td>0.749</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC7</td>
<td>0.730</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC8</td>
<td>0.817</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC9</td>
<td>0.809</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC10</td>
<td>0.834</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC11</td>
<td>0.717</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC12</td>
<td>0.689</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC13</td>
<td>0.697</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA3</td>
<td>0.683</td>
<td>0.901</td>
<td>0.874</td>
<td>0.536</td>
</tr>
<tr>
<td>CA4</td>
<td>0.816</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA5</td>
<td>0.789</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA6</td>
<td>0.800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA7</td>
<td>0.731</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA9</td>
<td>0.558</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA11</td>
<td>0.678</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA12</td>
<td>0.769</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EB1</td>
<td>0.800</td>
<td></td>
<td>0.919</td>
<td>0.897</td>
</tr>
<tr>
<td>EB2</td>
<td>0.820</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EB4</td>
<td>0.725</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EB5</td>
<td>0.820</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EB6</td>
<td>0.758</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EB7</td>
<td>0.761</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EB8</td>
<td>0.816</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KM1</td>
<td>0.732</td>
<td>0.872</td>
<td>0.825</td>
<td>0.534</td>
</tr>
<tr>
<td>KM2</td>
<td>0.692</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KM3</td>
<td>0.841</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KM4</td>
<td>0.729</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KM7</td>
<td>0.677</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KM8</td>
<td>0.701</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MT1</td>
<td>0.755</td>
<td>0.800</td>
<td>0.625</td>
<td>0.572</td>
</tr>
<tr>
<td>MT2</td>
<td>0.795</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MT3</td>
<td>0.717</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDI3</td>
<td>0.604</td>
<td>0.923</td>
<td>0.907</td>
<td>0.546</td>
</tr>
</tbody>
</table>
According to the principle of discriminant validity, the components of one construction are more closely connected to those components of the same construction as opposed to the components of other constructions (Campbell & Fiske 1959). For the purpose of determining discriminant validity, statistical tools such as cross loadings and the Fornell-Larcker criterion are used (Henseler, Ringle, & Sinkovics, 2009). Table 3 displays the results of this inquiry according to the Fornell-Larcker criterion. If the values on the diagonal are much larger than the other values, this suggests that the constituent parts of the structure are intimately connected to one another.

Table 3.

<table>
<thead>
<tr>
<th>Fornell-Larcker criterion</th>
<th>AC</th>
<th>CA</th>
<th>EB</th>
<th>KM</th>
<th>MT</th>
<th>Innovation</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>0.748</td>
<td>0.697</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA</td>
<td></td>
<td>0.732</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EB</td>
<td>0.679</td>
<td>0.685</td>
<td>0.786</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KM</td>
<td>0.743</td>
<td>0.600</td>
<td>0.665</td>
<td>0.731</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MT</td>
<td>0.456</td>
<td>0.409</td>
<td>0.400</td>
<td>0.326</td>
<td>0.756</td>
<td></td>
</tr>
<tr>
<td>Innovation</td>
<td>0.671</td>
<td>0.599</td>
<td>0.606</td>
<td>0.510</td>
<td>0.357</td>
<td>0.739</td>
</tr>
</tbody>
</table>

Another criterion for the assessment of discriminant validity is cross loadings (Bagozzi et al. 1991). A few questions were deleted because of their low factor loadings. Following table shows the cross loadings of the items.

Table 4.

<table>
<thead>
<tr>
<th>Cross Loadings</th>
<th>AC</th>
<th>CA</th>
<th>EB</th>
<th>KM</th>
<th>MT</th>
<th>Innovation</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC1</td>
<td>0.673</td>
<td>0.509</td>
<td>0.497</td>
<td>0.536</td>
<td>0.317</td>
<td>0.405</td>
</tr>
<tr>
<td>AC10</td>
<td>0.834</td>
<td>0.526</td>
<td>0.554</td>
<td>0.620</td>
<td>0.296</td>
<td>0.552</td>
</tr>
<tr>
<td>AC11</td>
<td>0.717</td>
<td>0.590</td>
<td>0.483</td>
<td>0.508</td>
<td>0.330</td>
<td>0.477</td>
</tr>
<tr>
<td>AC12</td>
<td>0.689</td>
<td>0.476</td>
<td>0.466</td>
<td>0.583</td>
<td>0.420</td>
<td>0.505</td>
</tr>
<tr>
<td>AC13</td>
<td>0.697</td>
<td>0.512</td>
<td>0.552</td>
<td>0.536</td>
<td>0.376</td>
<td>0.517</td>
</tr>
<tr>
<td>AC2</td>
<td>0.749</td>
<td>0.528</td>
<td>0.456</td>
<td>0.518</td>
<td>0.515</td>
<td>0.448</td>
</tr>
<tr>
<td>AC7</td>
<td>0.730</td>
<td>0.427</td>
<td>0.403</td>
<td>0.449</td>
<td>0.237</td>
<td>0.451</td>
</tr>
</tbody>
</table>
Structural Model Results

This model investigates the connections that have been theorized to exist between different constructions. Henseler et al. (2009) and Hair et al. (2012, 2011, 2014) employed the conventional process of bootstrapping with 5000 bootstraps samples for the estimation of route coefficients in this investigation. This work followed their methodology. Figure 2 presents the findings obtained from using this approach.
It displays the outcomes of the route coefficients (beta). Path coefficients are used to illustrate the correlations (both positive and negative) that exist between the various constructs. It is also a test of the degree to which the connection is strong. It also displays the values for R2. In addition to this, it provides the proportion of DV variation that may be attributed to the IVs. If the t value is more than 1.96 and the p value is less than 5% (0.05), then the path coefficient is regarded to be statistically significant (Wong, 2013).

Fig. 2 Structural Model

Coefficient of determination R²

There are many different ways to define R2, but one definition is that R2 is “an indicator of predictive accuracy and the extent of its effect reflects a combined influence of exogenous latent factors on each endogenous variable” (Hair, Hult, Ringle, & Sarstedt, 2014). The R2 coefficient is a useful indicator for evaluating a model’s ability to make accurate predictions (Hair et al. 2014). It might have a value between zero and one. This inquiry yielded a value of R2 of 0.58. Chin (1998) suggests that this value should be in the center of the range.

According to the Hair et al. 2014 research, the bigger the number, the more accurate the forecast is. How accurate a model is determined by its R2 value. The R2 values are as follows: Strong = 0.67, Moderate = 0.33, Weak = 0.19 (Henseler et al. 2009; Chin 2010; Gotz, Liehr-Gobbers, K., & Krafft, 2010; Hair et al. 2014)

Table 6: R Square
Table 7 presents the t-value and p-value associated with the model. In addition, the t values for all three hypotheses are more than 1.96, while the p values are less than 0.05. This indicates that there is a considerable link between the three constructs, and as a consequence, these hypotheses are supported, whereas the others are not supported at all.

Table 7: Hypothesis Testing Results

| Hypothesis Testing Results | Original Sample (O) | Sample Mean (M) | Standard Deviation (STDEV) | T Statistics (|O/STDEV|) | P Values |
|---|---------------------|-----------------|-----------------------------|--------------------------|----------|
| innovation –> CA | 0.195 | 0.234 | 0.096 | 2.017 | 0.044 |
| KM –> CA | 0.062 | 0.092 | 0.128 | 0.480 | 0.631 |
| EB –> CA | 0.337 | 0.296 | 0.107 | 3.156 | 0.002 |
| AC*EB –> CA | 0.178 | 0.226 | 0.174 | 1.022 | 0.307 |
| AC*IN –> CA | -0.037 | -0.045 | 0.126 | 0.293 | 0.770 |
| AC*KM –> CA | -0.135 | -0.139 | 0.133 | 1.018 | 0.309 |
| MT*EB –> CA | -0.411 | -0.376 | 0.174 | 2.366 | 0.018 |
| MT*IN –> CA | 0.224 | 0.193 | 0.148 | 1.510 | 0.131 |
| MT*KM –> CA | 0.027 | 0.024 | 0.154 | 0.176 | 0.861 |

Entrepreneurial problem-solving, innovative techniques, and knowledge management were all examined as part of the study project. In addition, the research sought to examine the influence of absorptive ability and market volatility on the correlations in question. The hypotheses were tested using a statistical technique known as multiple regression. We will now turn our attention to the relationships that exist between the independent and dependent variables, namely, the effects that ACAP and MT have on those relationships. There is evidence to support just three of the nine possibilities. This study’s results showed that innovation and CA have a strong relationship to them. According to Hughes et al., Monreal-Pérez et al. (2012), López Rodríguez and García Rodríguez (2005), and Yeoh (2014) all of whom found that innovation enables businesses to enter new markets, increase the value they provide to customers, lower operating expenses and enjoy the benefits of a competitive advantage. Companies need to innovate if they want to succeed in today’s competitive markets (Hui & Qing-xi, 2006; de Jong & Vermuelen, 2006; Lyon & Ferrier, 2002; Weber & Weber, 2007; Balkin, Markaman, & Gomez-Mejia, 2000; Baker & Sinkula, 2002; Darroch & McNaughton, 2002). As a result of the information presented above, it is clear that organizations seeking to stay ahead of the competition must place a high priority on innovation. Keeping up with the most current advancements in their industry should also be a priority for them. This study’s
findings show no correlation between knowledge management and CA that may be considered statistically significant. According to the conclusions of many previous studies, this discovery contradicts this one. By using knowledge management, organizations may cultivate a culture that supports the sharing of information and the creation of intellectual capital. Everything from gathering data to organizing and sharing it is part of it (Naktiyok, 2004, pp. 193). A link has been established between CA and effective knowledge management, as explained by (Grant, 1996; Johannessen & Olsen, 2003; Lado & Wilson, 1994). Though prior studies (Ndlela & Toit, 2001; Holsapple & Singh, 2001) have shown that research in this subject is still in its early stages, the findings of the current study are supported by both investigations. The relationship between effective knowledge management and a company’s competitive advantage is more descriptive than empirical. As a pro-active statement, the idea that proactive knowledge management may provide companies an edge in the market is presented. Organizations in Pakistan are lagging behind in Knowledge Management. In no way, shape, or form are they profiting from KM’s work. Outside knowledge resources available to businesses are also affected by the concentration of similar firms in a particular area, as well as by the kind of data and the sector in issue... (Jaffe et al., 1993; Teece, 1986; Saxenian, 1994). The amount of external information available to firms in the textile sector is almost same. It’s difficult for a business to have a competitive advantage if all of its resources are equal. The results of this study show that entrepreneurial bricolage and the advantage of competitive advantage have a strong and direct link. Entrepreneurial bricolage has a favorable correlation with innovation, according to Baker and Nelson’s research in 2005 and Zott and Amit’s in 2010. Both of these studies support this conclusion. We got to the conclusion that there is a substantial link between creative activity and CA throughout our investigation. The researchers’ results lend support to the premise that bricolage is a key source of competitive advantage for entrepreneurs. As Potts and Cunningham (2008) and Guercini and Runfola (2012) have noted, bricolage helps firms to be creative in solving organizational problems that lead to the competitive advantage, as well as Potts and Cunningham (2008), Daskalaki (2010), Hotho and Champion (2011), and Potts and Cunningham (2008) have all pointed out. They were all documented in peer-reviewed scholarly publications. The numerous resources at a company’s disposal may be combined to uncover new opportunities and enhance the present usage of those resources. As a result, production costs are decreased, giving the company an advantage in the market (Brown & Eisenhardt, 1997). Because of this, we have come to the conclusion that firms should focus on entrepreneurial bricolage in order to improve performance and thrive in the market. Analysis of interaction terms between ACAP and innovation, knowledge management and entrepreneurial bricolage was carried out to determine whether or not a moderating effect existed. A significant interaction impact between ACAP and any of the independent variables was not found, according to the results. The ACAP of the firms, according to a previous study, is the product of their R&D activities. A company’s research and development may make more use of information from various sources if it does its own research (e.g., Tilton, 1971; Mowery, 1983; Allen, 1977). Lane, Koka, and Pathak (2002) claim that ACAP may give many benefits, however they point out that the organization’s historical precedents for ACAP have been overlooked. The fact that different organizational antecedents of ACAP can have different performance outcomes suggests that businesses should manage these ACAP dimensions in order to

The interaction terms between the moderating variable (market turbulence) and the independent variables (innovation, knowledge management, and entrepreneurial bricolage) were examined in order to evaluate the moderating effects. There is a considerable moderating influence on the association between turbulence in the market and bricolage, while the relationship between turbulence and knowledge management has no effect. It's also meaningless in terms of the link between market instability and new product development. To respond to shifting market demands, a company's resources are thought by (Grant, 1991). The study found both positive and negative links between creativity and innovation. [Reference required] According to [Citation required], Companies that make an effort to understand the changing needs of their business generate innovative, ground-breaking products and gain a competitive advantage (Jap, 2001). Businesses are under tremendous pressure to innovate, yet doing so comes with a huge risk (Williamson, 1994).

Contributions of the study:
This investigation searched into a number of different things, including competitive advantage. This paper presents one of the first studies to look into the link between creative entrepreneurship and CA. Researching how innovation, knowledge management, and bricolage affect the competitive advantage of a company in the market is an important addition to academic knowledge. It also tells managers and business owners in the textile industry how to improve their performance and keep their businesses ahead of the competition.

Theoretical Contribution: The study examined the link between EB and a company's competitive edge. It adds a lot to what's been stated so far in this discussion. The relationship between EB and innovation has been the subject of several papers in the past.

It was also found that innovation—technological and non-technological—is essential to a company's success. It is another another contribution to examine the influence of knowledge management on competitive advantage.

ACAP and market volatility were examined as a third factor in how innovation, knowledge management and enterprise architecture are linked. ACAP and market volatility have been studied separately in the past. Changes in market volatility and the link between innovation and company success were examined by the researchers. Research shows that in order to preserve their position as market leaders, firms must use their imaginations and draw from a range of sources for inspiration, as indicated by the findings of this study.

Managerial Implications:
It is possible that the findings of this research will be useful to textile industry executives and managers in creating policies. Based on these results, the company's owners and executives may decide to take action in order to gain a competitive advantage.

To get an edge over competitors, organizations should focus on entrepreneurial bricolage, according to the study results. As a result, it is recommended that industry leaders implement plans to make full use of the resources that are now at their disposal. Their resources and the combinations of those resources must be optimized to their fullest potential.

A company's competitive advantage is enhanced through innovation, according to the research. Now that Pakistan's textile industry is losing market share to countries like India,
Bangladesh, and Vietnam, we have a duty to work toward improving the sector as a whole. To regain its previous competitiveness, Pakistan's textile industry must place a high value on research and development. Products that are both unique and freshly designed might provide one an advantage over the competition. As a consequence, businesses that are more creative have a higher chance of gaining a competitive advantage over their rivals in the marketplace. Managers will be motivated to place a higher value on innovation after reading this study.

Limitations of the study:
In economics and business study, there are generally certain restrictions. The following are the study's limitations:
The research is restricted to the Pakistani textile industry. The purpose of this investigation was to discover the causes behind the industry's demise. The research focused on innovation, knowledge management, and entrepreneurial bricolage as the variables of interest. Studies were conducted on the moderators MT and ACAP.
As time and resources were at a premium, the researchers undertook a cross-sectional study. It was a research project with a clear objective. Questionnaire-based surveys have their own set of drawbacks. It is unable to offer a comprehensive understanding of the subject. Future researchers will benefit from these restrictions.

Directions for Future Research:
The link between these five distinct ideas—innovation, knowledge management, entrepreneurial bricolage, absorptive aptitude, and market volatility—was investigated in this research. In order to make the framework more generalizable, it might be tested in a variety of countries and industries simultaneously.
In the future, it may be able to investigate other aspects such as the help provided by the government and the organizational structure. In addition, there is the possibility of doing longitudinal research in order to get a more in-depth comprehension of the links that were investigated in this study.

References

of Industry-University Collaboration.